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ABSTRACT
Vertebral fractures (VFs) are the hallmark of osteoporosis, being one of the most frequent types of fragility fracture and an early
sign of the disease. They are associated with significant morbidity and mortality. VFs are incidentally found in one out of five imag-
ing studies, however, more than half of the VFs are not identified nor reported in patient computed tomography (CT) scans. Our
study aimed to develop a machine learning algorithm to identify VFs in abdominal/chest CT scans and evaluate its performance.
We acquired two independent data sets of routine abdominal/chest CT scans of patients aged 50 years or older: a training set of
1011 scans from a non-interventional, prospective proof-of-concept study at the Universitair Ziekenhuis (UZ) Brussel and a valida-
tion set of 2000 subjects from an observational cohort study at the Hospital of Holbæk. Both data sets were externally reevaluated
to identify reference standard VF readings using the Genant semiquantitative (SQ) grading. Four independent models have been
trained in a cross-validation experiment using the training set and an ensemble of four models has been applied to the external
validation set. The validation set contained 15.3% scans with one or more VF (SQ2-3), whereas 663 of 24,930 evaluable vertebrae
(2.7%) were fractured (SQ2-3) as per reference standard readings. Comparison of the ensemble model with the reference standard
readings in identifying subjects with one or more moderate or severe VF resulted in an area under the receiver operating charac-
teristic curve (AUROC) of 0.88 (95% confidence interval [CI], 0.85–0.90), accuracy of 0.92 (95% CI, 0.91–0.93), kappa of 0.72 (95% CI,
0.67–0.76), sensitivity of 0.81 (95% CI, 0.76–0.85), and specificity of 0.95 (95% CI, 0.93–0.96). We demonstrated that a machine learn-
ing algorithm trained for VF detection achieved strong performance on an external validation set. It has the potential to support
healthcare professionals with the early identification of VFs and prevention of future fragility fractures. © 2023 UCB S.A. and The
Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Min-
eral Research (ASBMR).
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Introduction

Osteoporosis affects approximately 200 million people glob-
ally, resulting in 9 million fragility fractures each year.[1,2]

Vertebral fractures (VFs) due to osteoporosis are common with
one occurring every 22 seconds worldwide in individuals aged
50 years or older. Patients suffering from VFs are exposed to a
higher risk for subsequent fractures, notably hip fractures,[3]

and face an increased risk of death compared to patients without
VFs.[4] Accurate identification of VFs may, therefore, offer a
means to flag patients at high risk for future debilitating
fracture.[5] However, it is estimated that up to one of three VFs
come to clinical attention.[6] VFs are often asymptomatic or
mildly symptomatic and radiological studies are most often
obtained for other clinical purposes. The workload of radiologists
increased by double digits over the last decades driven by an
increase in cross-sectional imaging studies in routine and emer-
gency care, two-thirds of which were computed tomography
(CT) exams.[7-9] Despite this increase in available images, oppor-
tunistic identification of VFs by radiologists in imaging studies
visualizing the spine is lagging and many VFs go undetected or
unreported.[10,11]

Osteoporosis imaging is used to quantitatively assess bone
quality and diagnose prevalent fragility fractures such as VFs.
Radiologists can identify VFs in radiographs, dual-energy X-ray
absorptiometry (DXA) images, and sagittal reformations of CT
images[12] by applying different reading standards that can be
categorized as qualitative, quantitative, and semiquantitative
(SQ) assessments. The qualitative approach relies on the reader’s
expertise to visually assess morphologic features and is a subjec-
tive method with poor interobserver agreement. Quantitative
methods rely on morphometric features, are objective and
reproducible, yet they lack specificity for VFs. Genant’s SQ assess-
ment combinesmorphometric (eg, shape) withmorphologic (eg,
endplate deformity) features[13] and is recommended by most
societies such as the International Society for Clinical Densitom-
etry (ISCD), International Osteoporosis Foundation (IOF), and
European Society of Musculoskeletal Radiology (ESSR).[12] The
SQ method is commonly applied in research studies as a gold
standard. It is considered more objective and reproducible than
a qualitative approach, but can be difficult to apply.[12,14] Several
studies have shown that interreader and intrareader variability
can be significant across modalities and for different VF
grades.[15,16] Finally, recent work showed that the debate on
the most appropriate reading standard is still very much
ongoing.[17]

Machine learning algorithms can support VF identification by
opportunistically evaluating CT scans of abdomen or chest for
suspected VFs that can be confirmed by a radiologist and
reported to a healthcare professional.[18] Computer-aided diag-
nosis (CAD) methods for VF detection are applied to 2D and 3D
modalities yet most exclusively leverage 2D information (ie, sag-
ittal reformations in the case of CT).[19] Modeling approaches
range from segmentation of vertebral bodies followed by height
measurements to deep learning methods automatically scoring
an image as containing VFs or not.[20-25] Previous diagnostic per-
formance studies reported single-center validation results on
sample sizes of a few hundred subjects.[24,26] One study reported
subject-level fracture detection results on 1700 subjects but
applied an adjudication procedure unblinded to CAD readings,
which may have inflated their performance results.[27] Over the
last two decades, machine learning methods, such as deep

learning based methods, have been successfully applied to
detect and segment objects in images.[28] However, deep learn-
ing methods for medical image analysis still face several chal-
lenges, such as data availability, generalizability,
interpretability, and uncertainty quantification for which
research is still ongoing.[29]

VFs are the hallmark of osteoporosis and are associated with a
marked increase in future fracture risk.[3] Yet the majority go
undetected and the opportunistic identification of VFs in routine
imaging exams is lagging. Therefore, the objective of this study
was to develop a new automated algorithm capable of identify-
ing VFs in abdomen/chest CT scans and to evaluate its perfor-
mance against blinded reference standard readings in an
external validation set.

Materials and Methods

In this diagnostic accuracy study, we acquired two independent
data sets of abdominal/chest CT scans of subjects aged 50 years
or older, performed for various indications. The first data set of
1011 routine CT scans from a non-interventional, prospective
proof-of-concept study at UZ Brussel (Belgium) was used as a
training set to develop a machine algorithm for the automated
detection of VFs. The second data set of 2000 CT scans from an
observational cohort study performed at Holbæk Hospital
(Denmark) was used as an external validation set to evaluate
the algorithm’s performance. Both data sets were evaluated to
identify prevalent VFs and establish the reference standard read-
ings for every vertebra visible in these scans. A validation sample
of 204 subjects with VFs, which would be surpassed assuming
15% prevalence in the validation set, was estimated to be suffi-
cient to measure a sensitivity of 80% requiring the lower 95%
confidence limit to be >70% with 95% probability.[30]

We developed an automated VF detection algorithm and
assessed its performance on two outcomes: (i) a subject-level
binary outcome for the presence of one or more VFs in the CT
scan, and (ii) a vertebral-level binary outcome for the presence
of a VF for every vertebra visible in the CT scan. We apply two
binarization schemes to the SQ grades: (i) outcome VFSQ123 with
normal in the “no VF” and mild, moderate, and severe VFs in the
“VF” category, and (ii) outcome VFSQ23 with normal and mild VFs
in the “no VF” and moderate and severe VFs in the “VF” cate-
gory. Although the former outcome captures every SQ grade
defined by the Genant method, the latter focuses on the clini-
cally most important fractures and is therefore considered the
primary outcome of this study.

The reporting of this study followed the standards for the
reporting of diagnostic accuracy studies (STARD) 2015
guidelines.[31]

Study population

Training set

The training set contained 1011 routine CT scans from a non-
interventional, prospective proof-of-concept study, performed
at UZ Brussel between January and August 2019. The Ethical
Committee at UZ Brussel approved this study (B.U.N.
143201732477) and informed consent has been acquired from
all subjects enrolled in this study.

CT scans of the abdomen (potentially including the pelvis) and
chest were identified from routine care at UZ Brussel by one
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board-certified radiologist (SR) using the following selection cri-
teria: (i) include subjects aged 50 years or older at the time of
the scan, (ii) construct a random sample of male / female sub-
jects, (iii) construct a balanced sample of abdominal and chest
CT scans, (iv) construct a balanced sample of “VF”/”no VF” scans
(presence of any VF was identified through visual inspection by
SR), and (v) construct a cumulative sample of ≥10 VFs of Genant
SQ grades mild, moderate, and severe from thoracic or lumbar
vertebrae. All the available CT studies were extracted as Digital
Imaging and Communications in Medicine (DICOM) images from
the radiology database and pseudonymized after extraction.

The 1011 scans contained between 2 and 20 diverse CT stud-
ies (different reconstructions, reformations and occasionally dif-
ferent CT exams acquired during the same visit). JN manually
reviewed all CT scans in Osirix MD Viewer to include one CT study
for each subject in the training set using the following criteria:
(i) exclude CT scans with a slice thickness of >3 mm,
(ii) maximize the cumulative number of VFs for SQ grades mild,
moderate, and severe for every vertebral level T1 to L5, and
(iii) maximize variability of scans across different manufacturer
models, exam types (abdomen, abdomen with hip, chest, full
spine), convolution reconstruction kernels, slice thickness, in-
plane pixel spacing and signal-to-noise ratio (qualitatively
assessed by JN). This resulted in a total of 921 CT scans, excluding
90 CT scans belonging to duplicate subjects. Vertebral centroids
and levels were manually annotated by JN using MeVisLab.[32]

Validation set

The CT scans of the validation set were retrospectively acquired
in the context of an observational cohort study, approved by the
Danish Patient Safety Authority (3-3013-2687/1), Statistics
Denmark (707480), and covered by the Danish Data Protection
Agency approval for Region Zealand healthcare research (REG-
101-2018). Ethics committee approval was not required for the
validation set.

An external validation set of 2000 abdominal/chest CT scans
performed at Holbæk Hospital from January 1, 2010 onward
was extracted from the radiology database and pseudonymized
after extraction. The CT scans were retrospectively acquired in
the context of an observational cohort study, approved by the
Danish Patient Safety Authority (3-3013-2687/1), Statistics
Denmark (707480), and covered by the Danish Data Protection
Agency approval for Region Zealand healthcare research (REG-
101-2018). The study included male/female subjects aged
50 years or older at the time of the scan. The data obtained in
the CT scan reevaluation was linked—on an individual level—
to the Danish national registers. From these, information on
demographics, medical history, and use of pharmaceutical drugs
were obtained. Further details on the eligibility criteria, methods,
sample size calculations and baseline characteristics of the vali-
dation scans can be found in Skjødt and colleagues.[33] The
validation set data flow diagram is shown in Fig. 1. CT scans iden-
tified by the machine learning algorithm as “not readable”
and/or not having any registry data were excluded from the ana-
lyses reported here.

Reference standard reading

Reference standard readings were established in both training
and validation sets by evaluating the CT scans for prevalent VFs
in a two-step process blinded to clinical information. First, a
trained medical doctor (CL) triaged the scans in three categories
(certain VF, potential VF, and no VF). Second, vertebral-level

reference standard readings were produced by highly experi-
enced radiologists (Clario, USA) using the semiquantitative (SQ)
Genant classification.[13] Dr. Harry Genant adapted the SQ
method from radiographs to CT scans and supervised the stan-
dardization sessions with the reading team prior to the com-
mencement of reading activity. A single radiologist from the
reading team evaluated every visible vertebra in the scans cate-
gorized with certain VF or potential VF, together with a 5% sub-
set of scans without VFs. Radiologists were blinded to the scan
selection process and the triage category. Reader variability
assessments were performed for a subset (10%) of all scans. In
this article, we refer to normal vertebrae as SQ0, mild VF as
SQ1, moderate VF as SQ2, and severe VF as SQ3. Figure S1 illus-
trates the reference standard reading for every SQ grade on
exemplary vertebrae extracted from our training set.

Development of VF detection algorithm

We developed an automated VF detection algorithm that com-
prised of two components: (i) a VF detection model that deter-
mines the SQ grade (ie, SQ0-3), and (ii) a vertebra identification
model that localizes each vertebra present in the scan. This algo-
rithm processes an abdominal/chest CT scan and outputs an esti-
mated SQ grade for every vertebra identified in the scan (Fig. 2A-
E). The VF detection results can be visualized as heat maps over-
laid on top of the original CT scan.

We developed a VF detection Convolutional Neural Network
(CNN)model by extending on our previous work that was limited
to detecting binary, subject-level VFs and was trained on a smal-
ler dataset of 90 CT scans.[34] CT scans were resampled to
1 � 1 � 1 mm3, and intensities were clipped between �1024
and 2000 Hounsfield units and Z-score normalized as preproces-
sing steps. CT scans with corrupt DICOM series (eg, due to miss-
ing slices or erroneous DICOM headers) were not readable by the
algorithm. The machine learning algorithm automatically out-
puts the “not readable” signal. The VF detection model ingests
3D patches of size 114 � 114 � 114 mm3 extracted from the
preprocessed CT image and processes each patch at normal
and subsampled resolution (Fig. S2). The features learned at both
scales are concatenated and further postprocessed to output a
class probability for every SQ grade. Wemodel the output classes
as independent variables estimated using a linear model of the
shared features and trained the model with a binary cross-
entropy loss. This design allows the CNN to learn discriminating
features for each SQ grade and to output mixed belief between
grades if needed. The training set for the VF detection CNN
model was constructed by merging the VF reference standards
readings with the vertebra centroids annotations on vertebral
level for the 921 CT scans. JN manually reviewed the CT scans
with merged readings in MeVisLab to identify vertebra label mis-
matches or missing centroids. CT scans with such mismatches or
misses, together with scans that revealed image quality issues
during this manual review were excluded from the training set.
We used the vertebra localization model developed by Payer
and colleagues[35] to estimate centroids and levels for every ver-
tebra present in the CT image. This model achieved state-of-the-
art identification and localization results of approximately 90% in
consecutive years on the Verse challenge.[36]

The 4D VF detection probabilitymaps were aggregated to ver-
tebral level by averaging the voxel probabilities in a 3D cube of
size S around every estimated centroid. This resulted in a belief
score vector si for every vertebra i found in the CT scan corre-
sponding to the model’s belief for every SQ grade (Fig. 2E). The
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scores si were discretized to an estimated SQ grade vi � {SQ0,
SQ1, SQ2, SQ3} by combining the beliefs for the different SQ
grades using a belief function: vi ¼ f si , t1, t2ð Þ. This function
encodes that the estimated SQ grade vi is the output with the
highest belief if this belief score is above a given minimum belief
threshold t1. If the highest and second highest belief scores are
close within a givenmixed belief threshold t2, the model outputs
amixed belief from the set {normal/mild, mild/moderate, moder-
ate/severe} to encode that both SQ grades are as likely for the
model. The binary vertebral-level and binary subject-level out-
comes were derived in a straightforward manner from the
vertebral-level, categorical outcomes vi .

We conducted a four-fold cross-validation (CV) experiment to
develop the VF detection CNNmodel by applying a stratified split
of the training set. We stratified all CT scans into 24 groups repre-
senting all the combinations of theworst fracture grade (SQ0, SQ1,
SQ2, SQ3), exam type (abdominal, chest, full spine) and gender (M,
F) using the scikit learn package.[37] In each fold, three splits have
been used as training set (of which 15% of the scanswere held out
to determine the optimal hyperparameters, ie, best epoch, mini-
mum belief threshold t1 and mixed belief threshold t2 of each
fold model) and one split was used as a CV test set. Models were
trained for 40 epochs and the best epoch and minimum belief
threshold t1 were determined for each fold model using the
mean F1-scores of the validation samples. The mixed belief
threshold t2 was set in a principled manner to allow no more
than 10% of the vertebrae to be detected with mixed belief. All
other hyperparameters were defaulted to state-of-the-art set-
tings for all fold models (e.g., RMSprop optimizer, batch normal-
ization enabled, L1–L2 regularization and dropout enabled

during training). Each fold model was trained on one NVidia
GTX 1080 Ti GPU card and a custom-developed Python 3 soft-
ware package that leverages Tensorflow[38] version 2.3 and Sim-
pleITK[39] version 1.2. We applied a cube size S¼ 10 for the
vertebral-level aggregation. We used the open-source docker
image with weights trained on the Verse2020 challenge data
for the vertebra localization model. We used the latest model
available at https://hub.docker.com/r/christianpayer/verse20.

We applied an ensemble of four independently trained
models by averaging the vertebral level scores si for each grade
across all models. This approach is similar to asking four experts
to independently read a CT scan for VFs and weighing each
expert’s opinion equally in a consensus review. The algorithm
and reference standard readings were blinded to each other.

Statistical analyses

Baseline characteristics are presented using median and inter-
quartile range (IQR) and counts and proportions for continuous
and categorical variables respectively. Groups were compared
by two-tailed Student t tests (training set, Table 1) andmedian test
(validation set, Table 2) for continuous data and χ2 tests for cate-
gorical data. A significance threshold of p < 0.05 was applied.

The validation set was used to evaluate the performance of
the algorithm in identifying VFs at the subject and vertebral level
by the area under the receiver operating characteristic curve
(AUROC), accuracy, sensitivity, specificity, positive and negative
predictive values (PPV/NPV), and Cohen’s kappa. We used the
interpretations defined in[40] for Cohen’s kappa. The accelerated
bootstrapping method with bias correction applying 1000

Fig. 1. Data flow diagram of the validation set: 2000 abdominal/chest CT scans were collected in an observational cohort study, performed at Holbaek
hospital from January 2010 onward. The gray boxes depict a processing activity performed on the data. CT = computed tomography;
SQ = semiquantitative grade; VF = vertebral fracture.
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repetitions was used to construct the 95% CIs. We computed
subject-level and vertebral-level results for the primary outcome
VFSQ23 (negative = SQ0 or SQ1, positive = SQ2 or SQ3) and the
secondary outcome VFSQ123 (negative = SQ0, positive = SQ1,
SQ2 or SQ3). We conducted a subgroup analysis on the primary
outcome VFSQ23 at the subject level (age, gender) and at the ver-
tebral level (gender, CT exam type). Sensitivity analyses were per-
formed, firstly, to exclude subjects treated with an osteoporosis
medication (OM) at any time before baseline, and subjects with
a diagnosis code for any malignancies, Paget’s disease, and/or
monogenetic osteoporosis at baseline, and secondly, to exclude
subjects treated with corticosteroids within the year prior to
baseline. Finally, we analyzed the identification performance of
the vertebra localization model by reporting the ratio between
the number of scans for which the first and last vertebra level
were identified identically and the total number of scans.

Differences in vertebra labeling by the reference standard
reading and algorithm resulted in a subset of the vertebrae
being graded by one yet marked as “not visible” by the other.
For the vertebral-level analysis, we regrouped the “not visible”
vertebrae together with SQ0-1 vertebrae. Vertebrae identified
as “not visible” by both reference standard reading and algo-
rithm were excluded from the vertebral-level analysis. The per-
formance analysis was executed twice on the validation set,

using algorithm version 1 readings (performed in 2021) and
using algorithm version 2 readings (2022–2023). None of the
validation cases used in current study were used to update the
algorithm from version 1 to 2. The VF detection model was not
re-trained for algorithm 2; only the belief function has changed
from version 1 to 2. We described and presented only the results
from the latest algorithm version 2 in this manuscript. We com-
pared the mixed belief outputs (normal/mild, mild/moderate,
moderate/severe) forgivingly by accepting an agreement if the
reference standard reading was present in the model output
(eg, if the algorithm detected normal/mild, a correct detection
was recorded if the reference standard reading was normal or
mild and a miss if the reference standard reading was moderate
or severe). Statistical analyses comparing the reference standard
readings with the algorithm outputs in the validation set were
performed using Stata version 16 and 17 (StataCorp, College Sta-
tion, TX, USA).

Results

Study data

The 921 CT studies belonging to unique subjects have been
linked with the VF readings and vertebral centroid annotations

Fig. 2. Automated VF detection algorithm overview: schematic to illustrate how the algorithm estimates the SQ grade for the top T12 vertebra in an
abdominal scan from our training set. A 3D patch is extracted from the CT scan (A) and processed by two independent models for (1) identifying the
SQ grade and (2) localizing the vertebrae present in the scan respectively (B). The VF model outputs a VF detection heat map image for every SQ grade
representing the algorithm’s confidence that a given SQ grade is present at voxel level (C). The VB model outputs a list of vertebral levels identified with
their centroid coordinates (D). For every vertebra i identified by the VB model, a postprocessing step computes a score vector si by averaging the confi-
dence scores in the VF detection heatmap around the vertebra centroid (illustrated with the red point) and defines the estimated grade from the belief
function as depicted. In this example, the estimated grade for T12 is SQ2 because the belief score vector si has the highest belief score for SQ2 and this SQ2
belief score is > t1 and > t2þ second highest SQ3 belief score. Each image displays one mid-sagittal slice extracted from the CT scan, after thresholding
intensities between�1024 and 2000 Hounsfield units. Images in C and E additionally show the VF detection heat maps overlaid on top of the sagittal slice,
using heat maps colors from 0.05 (blue) to 1.0 (red) as depicted in E. (A) Abdominal CT scan from training set; (B) VF detection algorithm models; (C) VF
detection heat map output images; (D) VB identification model output list; (E) postprocessing the VF and VB outputs illustrated for the top T12 vertebra.
CT= computed tomography; SQ= semiquantitative grade; VB= vertebra; VF= vertebral fracture.
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to generate a training set of 666 samples, excluding 255 training
samples because of vertebral level mismatches (50%), missing
centroids (30%), and image quality issues (20%). This training
set contained 292 (44%) chest (T4 is visible), 167 (25%) abdomi-
nal (L2 is visible), 201 (30%) full spine (T4 and L2 are visible) and
six other (neither T4 nor L2 are visible) CT scans. These scans orig-
inated from four different scanners (Philips ICT 256, GE Revolu-
tion CT, GE Discovery CT750 HD, Siemens Definition AS40), had

a median slice thickness of 1 mm (IQR: 0.9–1.25 mm, minimum:
0.625 mm, maximum: 3 mm), a median in-plane pixel-spacing
of 0.68 mm (IQR: 0.58–0.74 mm, minimum: 0.24 mm, maximum:
1.22 mm), three different peak kilovoltage (kVp) outputs of
100 (45%), 120 (47%), and 140 (8%) and 23 different convolution
kernels (12 of which are present more than 10 times).
The training set contains a total of 367 scans (55%) with one or
more VFs, representing 7537 vertebrae of which 915 (12%) are
fractured (SQ grade >0). Figure 3 shows the number of VFs strat-
ified to SQ grade in the training set across all vertebrae with a
bimodal distribution for the proportion of visible vertebrae that
are fractured as reported by others.[24] The expected amount of
at least 10 VFs of every SQ grade per vertebral level has been
reached for all but vertebrae T1–T4, T10, and L5. We found that
scans with ≥1 VF are predominantly female subjects who are
on average older than subjects without VFs and that chest exams
are predominantly present in the “no VF” groups (Table 1). We
performed a reader variability study on a subset of 62 scans
and a total of 766 vertebrae in a challenging set containing more
than 80% of CT scans with one or more VFs. We found at the sub-
ject level a Cohen’s kappa of 0.61 (95% CI, 0.38–0.84) and 0.76
(95% CI, 0.54–0.98) for the primary outcome VFSQ23 and second-
ary outcome VFSQ123, respectively, and at the vertebral level a
Cohen’s kappa of 0.69 (95% CI, 0.62–0.76) and 0.80 (95% CI,
0.76–0.85) for the primary outcome VFSQ23 and secondary out-
come VFSQ123, respectively.

In the validation set, the scan of some subjects was not read-
able by the algorithm and some subjects had no registry data
available. These subjects (n = 57) were excluded. Of the remain-
ing 1943 scans, 297 (15.3%) had one or more VFSQ23 and
407 (20.9%) had one or more VFSQ123, whereas 663 of 24,930 ver-
tebrae (2.7%) were fractured with SQ grade 2–3 and 1066 of
24,930 vertebrae (4.3%) were fractured with SQ grade 1–3.
Figure 4 shows the number of VFs stratified to SQ grade in the
validation set across all vertebral levels with a bimodal distribu-
tion peaking at T7–T8 and T12–L1. The CT scans in the validation
set have been acquired on one scanner model (Philips Brilliance
64) and were all secondary DICOM images resampled to a slice
thickness of 3 mm. The CT scans had a median in-plane pixel-
spacing of 0.76 mm (IQR: 0.68–0.88 mm, minimum: 0.18 mm,
maximum: 1.61 mm). Ninety-eight percent (98%) of the CT scans
were acquired using a kVp of 120 (29 and 11 scans were acquired
using 100 and 140 kVp, respectively). 56% of all CT scans were
thorax exams. Table 2 shows the baseline characteristics of the
“VFSQ123” and the “no VF” cohorts in the validation set. The
median Charlson comorbidity index (CCI) score and the propor-
tion of subjects with a major osteoporotic fracture (defined as
hip, non-cervical vertebral, humerus, and distal forearm fracture)
were higher in the VFSQ123 cohort, and a larger proportion of the
VFSQ123 subjects received anti-osteoporosis medication (any
time prior to scan) and glucocorticoid therapy (in the year before
scan), all p values <0.001 (Table 2). We performed a reader vari-
ability study on 50 scans, representing a total of 594 vertebrae.
The validation set subsample used for the reader variability
assessment was representative for the validation set, both for
vertebra-level prevalence of SQ grades 0–3 and for subject-level
VF prevalence. We found at the subject level a Cohen’s kappa of
0.72 (95% CI, 0.52–0.93) and 0.77 (95% CI, 0.52–1.00) for the pri-
mary outcome VFSQ23 and secondary outcome VFSQ123, respec-
tively, and at the vertebral level a Cohen’s kappa of 0.83 (95%
CI, 0.77–0.90) and 0.78 (95% CI, 0.72–0.85) for the primary out-
come VFSQ23 and secondary outcome VFSQ123, respectively.

Table 2. Baseline Characteristics of the Validation Set Stratified
in “VFSQ123 (SQ grade >0)”/“no VF” Groups
Characteristic No VF (SQ 0) VFSQ123 p-value

Total, N (%) 1536 (79%) 407 (21%)
Subject demographics

Gender, female, n (%) 707 (46%) 218 (54%) 0.007
Age, years; median
(IQR)

68 (61–76) 74 (67–80) <0.001

Country of origin,
Denmark, n (%)

1473 (96%) 396 (97%) 0.19

Medical history
CCI score;median (IQR) 1 (0–2) 2 (0–3) <0.001
Major osteoporotic
fracture, n (%)a

141 (9%) 103 (25%) <0.001

Anti-osteoporosis
medication, n (%)b

73 (5%) 106 (26%) <0.001

Glucocorticoid
therapy, n (%)c

230 (15%) 89 (22%) <0.001

Note: The comparisons between both groups are statistically signifi-
cant on all presented characteristics (p < 0.05) except for the country
of origin.
Abbreviations: CCI = Charlson comorbidity index; IQR = interquartile

range; SQ123 = mild, moderate, or severe VF; SQ = semiquantitative
grade; VF = vertebral fracture.

aMajor osteoporotic fracture is defined as hip, non-cervical vertebral,
humerus and distal forearm fracture.

bAt any time prior to baseline.
cIn the year prior to scan.

Table 1. Baseline Characteristics of the Training Set Stratified in
“VFSQ123 (SQ grade >0)”/“no VF” Groups

Characteristic
No VF
(SQ 0) VFSQ123 p

Total, N (%) 299 (45%) 367 (55%)
Subject demographics

Gender, female, n (%) 134 (45%) 221 (60%) <0.001
Age, years, median
(IQR)

70 (61–77) 78 (69–84) <0.001

CT exam
Visible vertebrae;
median (IQR)

10 (8–14) 12 (8–15) <0.001

Abdomen exams, n
(%)

11 (4%) 156 (43%) <0.001

Chest exams, n (%) 210 (70%) 82 (22%) <0.001
Full spine exams, n (%) 77 (26%) 124 (34%) 0.03

Note: The comparisons between both groups are statistically significant
on all presented characteristics (p < 0.05).
Abbreviations: IQR = interquartile range; SQ = semiquantitative

grade; VF = vertebral fracture.
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Algorithm development

We trained four VF detection CNN models using the architecture
in Fig. S2, each containing a total of 112,517 trainable parame-
ters. Most computations during training were central processing
unit (CPU)-bound (eg, preprocessing, data augmentation, and
patch sampling) resulting in runs of more than 100 hours to train
each model on a single graphics processing unit (GPU). We
found that model training demonstrated sound learning curves
with monotonically decreasing training and cross-validation
losses. The cross-validation analysis showed that the vertebral-
level results using the belief function vi ¼ f si , t1, t2ð Þ were stable
for different values of the minimum belief threshold t1 for all fold
models. Although any choice between 0.0 and 0.25 would be
reasonable from the cross-validation analysis, we set t1 to 0.2
for all fold models as a conservative choice that would avoid
noisy detections, which we specifically found for edge vertebrae
in our cross-validation analysis. Themixed belief threshold t2 was
set to 0.20, 0.18, 0.13, and 0.13 for the fold1, fold2, fold3, and
fold4 models, respectively, from the cross-validation analysis.

Diagnostic performance in validation set

Themetrics for the evaluation of the diagnostic performance of the
VF detection algorithm versus reference standard readings in the
validation set are shown in Table 3A,B for outcomes SQ23 and
SQ123, respectively. Confusion matrices for all outcomes can be
found in Fig. S3. The SQ23 subject-level performance in

differentiating normal/mild from moderate/severe VFs showed
an AUROC of 0.876 (95% CI, 0.852–0.898), a Cohen’s kappa of
0.72 (95% CI, 0.67–0.76), an accuracy of 92.4% (1795/1943), a sensi-
tivity of 80.8% (240/297), a specificity of 94.5% (1555/1646), a PPV
of 72.5% (240/331) and an NPV of 96.5% (1555/1612). The
vertebral-level performance for identifying VFSQ23 had an AUROC
of 0.763 (95% CI, 0.745–0.783), a Cohen’s kappa of 0.58 (95% CI,
0.55–0.62), an accuracy of 98.1% (24,444/24,930), a sensitivity of
53.2% (353/663), a specificity of 99.3% (24,091/24,267), a PPV of
66.7% (353/529), and an NPV of 98.7% (24,091/24,401). The
machine learning algorithm detected a total of 638 (2.6%) verte-
braewithmixed belief outputs (normal/mild,mild/moderate,mod-
erate/severe), of which 128 vertebrae were correctly matched with
reference standard readings based on the second highest belief.

We found in the subgroup analysis at the subject level, an
accuracy of 92.8% (858/925) and 92.0% (937/1018) and a Cohen’s
kappa of 0.77 and 0.64 for women and men, respectively, and an
accuracy of 94.0% (914/972) and 90.7% (881/971) and a Cohen’s
kappa of 0.69 and 0.73 for the younger (50–69 years) and older
(70+ years) age groups, respectively (Table 4A). We found in
the subgroup analysis at the vertebral level, an accuracy of
97.5% (11,465/11,758) and 98.5% (12,979/13,172) and a Cohen’s
kappa of 0.60 and 0.55 for female and male vertebrae, respec-
tively, and an accuracy of 98.2% (16,503/16,810) and 97.8%
(7941/8120) and a Cohen’s kappa of 0.54 and 0.64 for the tho-
racic and lumbar vertebrae, respectively (Table 4B). We found
an accuracy of 92.8% (1065/1148) and 92.6% (1504/1624) and a
Cohen’s kappa of 0.66 and 0.72 in the first (excluding subjects

Fig. 3. Training set: number of fractured vertebrae per level and SQ grade. The horizontal axis depicts the vertebrae in standard anatomic fashion, starting
from T1 or the first thoracic vertebra and ending with L5 or the fifth lumbar vertebra. The total number of VFs stratified according to SQ grade (left axis,
vertical bars) and proportion of visible vertebrae that are fractured (red color, right axis, diamond points) are shown. SQ = semiquantitative grade;
VB = vertebral body; VF = vertebral fracture.
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Fig. 4. Validation set: number of fractured vertebrae per level and SQ grade including all 2000 subjects (25,391 vertebrae visualized in CT scan). The hor-
izontal axis depicts the vertebrae in standard anatomic fashion, starting from T1 or the first thoracic vertebra and ending with L5 or the fifth lumbar ver-
tebra. The total number of VFs stratified according to SQ grade (left axis, vertical bars) and proportion of visible vertebrae that are fractured (red color, right
axis, diamond points) are shown. VF numbers (and proportions) have not been reported if N < 5 or if discretized to maintain confidentiality.
Figure adapted from[33] with permission. SQ = semiquantitative grade; VF = vertebral fracture.

Table 3. Diagnostic Performance of VF Detection Algorithm Versus Reference Standard Readings in the Validation Set

Metric Subject level Vertebral level

(A) SQ23 (normal/mild versus moderate/severe)
AUROC 0.876 (0.852–0.898) 0.763 (0.745–0.783)
Accuracy 0.92 (0.91–0.93) 0.98 (0.98–0.98)
Kappa 0.72 (0.67–0.76) 0.58 (0.55–0.62)
Sensitivity 0.808 (0.762–0.851) 0.532 (0.494–0.569)
Specificity 0.945 (0.933–0.955) 0.993 (0.992–0.994)
PPV 0.725 (0.675–0.770) 0.667 (0.625–0.705)
NPV 0.965 (0.955–0.973) 0.987 (0.986–0.989)

(B) SQ123 (normal versus mild/moderate/severe) outcome
AUROC 0.815 (0.790–0.837) 0.728 (0.714–0.744)
Accuracy 0.85 (0.83–0.87) 0.96 (0.96–0.97)
Kappa 0.58 (0.54–0.63) 0.52 (0.49–0.55)
Sensitivity 0.757 (0.714–0.798) 0.470 (0.438–0.499)
Specificity 0.873 (0.855–0.889) 0.987 (0.986–0.988)
PPV 0.612 (0.569–0.653) 0.616 (0.582–0.648)
NPV 0.931 (0.918–0.943) 0.977 (0.974–0.979)

Note: The metrics are stratified by outcome SQ23 (normal andmild versus grade 2–3) and SQ123 (normal versus grade 1–3), and unit of analysis (subject
and vertebra). The depicted numbers are point estimates with 95% CI between parentheses, all CI have been generated using a bias-corrected and accel-
erated bootstrapping method (1000 iterations).
Abbreviations: AUROC = area under the receiver operating characteristic curve; CI = confidence interval; NPV = negative predictive value;

PPV = positive predictive value; SQ = semiquantitative grade; VF = vertebral fracture.
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treated with OM at any time before baseline or with a diagnosis
code for any malignancies, Paget’s disease, and/or monogenetic
osteoporosis at baseline), and second (excluding subjects trea-
ted with corticosteroids within the year prior to baseline) sensi-
tivity analysis, respectively.

The SQ123 subject-level performance in differentiating nor-
mal from grade 1–3 VFs showed an AUROC of 0.815 (95% CI,
0.790–0.837), a Cohen’s kappa of 0.58 (95% CI, 0.54–0.63), an
accuracy of 84.9% (1649/1943), a sensitivity of 75.7% (308/407),
a specificity of 87.3% (1341/1536), a PPV of 61.2% (308/503),
and an NPV of 93.1% (1341/1440). The vertebral-level perfor-
mance for identifying VFSQ123 had an AUROC of 0.728 (95% CI,
0.714–0.744), a Cohen’s kappa of 0.52 (95% CI, 0.49–0.55), an
accuracy of 96.5% (24,053/24,930), a sensitivity of 47.0%
(501/1066), a specificity of 98.7% (23,552/23,864), a PPV of
61.6% (501/813), and an NPV of 97.7% (23,552/24,117).

The reference standard readings and the vertebra localization
model agreed on the first and last identifiable vertebra level in
64% of the scans.

Discussion

In this study, we found that amachine learning algorithm trained
for identifying VFs on abdominal and chest CT scans from one
center demonstrated excellent diagnostic performance on
1943 validation CT scans from another center. The algorithm
reached a Cohen’s kappa score of 0.72, a sensitivity of 81%,
and a specificity of 95% compared to reference standard read-
ings in identifying subjects with moderate or severe VFs in the
external validation set. The current clinical approach relies on
radiologists identifying prevalent VFs in any CT scan that visual-
izes the (abdominal and/or thoracic) spine. Although only one
of three VFs are diagnosed clinically,[6] leaving a substantial diag-
nostic gap, other studies have demonstrated that less than one

of six incidental VFs on CT exams are reported by radiolo-
gists.[10,11] Hence, our machine learning algorithm compares
favorably to current clinical practice in terms of sensitivity.

Vertebral-level SQ grade reference standard readings were
defined by expert readers in a review process blinded to clinical
information and algorithm readings. We found in the reader var-
iability assessment a moderate agreement for the subject-level
and vertebral-level primary and secondary outcomes in both
the training and validation sets. The training set was constructed
to contain more than 10 VFs of every SQ grade at every vertebral
level (Fig. 3). Both training and validation set showed a bimodal
distribution of VFs along the spine as reported by others.[24] In
the validation set, we found a prevalence of 15% for moderate
or severe VFs (VFSQ23) and 21% for mild, moderate, or severe
VFs (VFSQ123) in line with the previous literature.

[26,27] The VFSQ123
cohort was older and sicker (median CCI score 2 versus 1) than
the “No VF” cohort in the validation set (Table 2, p values <0.001).

Applied in a clinical alertingworkflowwhere every positive case
would be manually confirmed by an expert, the VFSQ23 algorithm
would detect 81% of the positive cases and reduce the number of
scans to be reviewed by the radiologist by a factor of six (331 CT
scans flagged positive by the algorithm out of 1943 CT scans in
total). The VF detection algorithm demonstrated better agree-
ment in identifying moderate or severe VFs (VFSQ23) than mild,
moderate, or severe VFs (Cohen’s kappa score of 0.72 versus
0.58), suggesting that the algorithm performed best on the clini-
cally most important VFs, as studies have not shown strong evi-
dence of an association between mild VFs and low bone mineral
density.[14] The lower performance on mild VFs was expected as
mild VF readings exhibit higher inter-reader variability as
reported[15] and are thus more ambiguous to read for both an
expert reader and the algorithm. We accepted the mixed belief
outputs forgivingly (Section Statistical analyses) to deal with this
ambiguity, yet this biases the results upward. The vertebral-level
results should be interpreted with caution because mismatches

Table 4. Subgroup Analysis of VF Detection Algorithm Versus Reference Standard Readings for Outcome SQ23 (Normal or Mild Versus
Moderate or Severe VF) in the Validation Set

Metric Female Male 50–69 years 70+ years

(A) Subject level
AUROC 0.905 (0.876–0.930) 0.836 (0.790–0.869) 0.892 (0.851–0.927) 0.867 (0.838–0.893)
Accuracy 0.93 (0.91–0.94) 0.92 (0.90–0.94) 0.94 (0.92–0.95) 0.91 (0.89–0.93)
Kappa 0.77 (0.72–0.82) 0.64 (0.56–0.71) 0.69 (0.60–0.76) 0.73 (0.67–0.78)
Sensitivity 0.868 (0.812–0.909) 0.724 (0.635–0.795) 0.833 (0.736–0.902) 0.797 (0.739–0.850)
Specificity 0.941 (0.923–0.957) 0.948 (0.931–0.961) 0.951 (0.936–0.964) 0.937 (0.918–0.952)
PPV 0.774 (0.710–0.828) 0.654 (0.568–0.734) 0.636 (0.546–0.718) 0.775 (0.717–0.827)
NPV 0.969 (0.954–0.979) 0.962 (0.947–0.973) 0.982 (0.971–0.991) 0.945 (0.926–0.989)

Metric Female Male Thoracic Lumbar

(B) Vertebral level
AUROC 0.774 (0.749–0.797) 0.742 (0.711–0.776) 0.748 (0.722–0.775) 0.782 (0.752–0.809)
Accuracy 0.98 (0.97–0.98) 0.99 (0.98–0.99) 0.98 (0.98–0.98) 0.98 (0.98–0.98)
Kappa 0.60 (0.56–0.64) 0.55 (0.49–0.60) 0.54 (0.49–0.58) 0.64 (0.59–0.69)
Sensitivity 0.557 (0.507–0.604) 0.490 (0.427–0.551) 0.503 (0.449–0.553) 0.570 (0.512–0.627)
Specificity 0.991 (0.989–0.992) 0.995 (0.993–0.996) 0.993 (0.991–0.994) 0.993 (0.991–0.995)
PPV 0.683 (0.636–0.734) 0.638 (0.573–0.708) 0.602 (0.544–0.658) 0.759 (0.704–0.812)
NPV 0.984 (0.982–0.986) 0.990 (0.989–0.992) 0.989 (0.987–0.990) 0.984 (0.981–0.987)

Note: We compared subgroups according to age and gender at subject-level (A), and gender and CT exam type at vertebral-level (B). The depicted numbers are
point estimates with 95% CI between parentheses. All CIs have been generated using a bias-corrected and accelerated bootstrappingmethod (1000 iterations).
Abbreviations: AUROC = area under the receiver operating characteristic curve; CI = confidence interval. NPV = negative predictive value;

PPV = positive predictive value; SQ = semiquantitative grade; VF = vertebral fracture.
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between the vertebral levels identified by the model and reader
are common and these mismatches void the vertebral-level
results but importantly, they do not influence the subject-level
results (ie, the reader and model detecting a moderate VF but dis-
agreeing on its level, eg, T12 versus L1, yields an agreement at the
subject level but not at the vertebral level). Such vertebral-level
disagreement could be resolved by a radiologist after visual
inspection of the algorithm’s outputs (shown in Fig. 2C) and
hence, this issue would be alleviated in clinical practice. Further-
more, when the whole spine is not visible, the exact localization
of a specific vertebral body may be challenging. We argue that
while the vertebral-level results provide insight on the correct func-
tioning of the algorithm, the subject-level results are the most
important clinical outcomes that inform on how the algorithm
can aid with the identification of patients with VFs to inform treat-
ment decisions. We found minor differences in the performance
between subgroups with the algorithm performingmarginally bet-
ter in women than in men, in the older (70+ years) versus younger
(50–69 years) age groups, and in lumbar versus thoracic vertebrae.

Prior work studied the performance of a different VF detection
algorithm in a validation set of 1700 CT scans acquired at one
center.[27] The study applied an adjudication procedure that
unblinded the algorithm’s outputs to the readers and VFs were
only read and evaluated at the subject level, not at the vertebral
level. In a cohort different than that of our study, the authors
reported a lower subject-level sensitivity of 65% (versus 81% in
our study) and a similar specificity of 92% (versus 95% in our
study). Another study constructed a balanced validation set of
500 CT scans (half with and half without VFs, VF reading exe-
cuted by an automated machine learning method) involving
the lumbar spine, randomly selected from the radiology data-
base of the network of university hospitals of the Greater Paris
Area.[26] They reported a sensitivity and a specificity of 94%
(95% CI, 89%–98%) and 65% (95% CI, 60%–70%), respectively,
for the subject-level binary SQ23 outcome.

In our study, we constructed an external validation of abdom-
inal and chest CT scans performed more than a decade ago at a
single center and containing subjects of predominantly Danish
descent. Future studies should assess the algorithm’s perfor-
mance in contemporary CT scans performed on subjects of dif-
ferent ethnicity, acquired on different scanners in clinical
centers across the globe. We evaluated the performance of an
algorithm compared to reference standard readings, yet future
work should study how the application of such algorithm
impacts clinical care using two study arms, ie, one with and
one without an algorithm as computer-aided support. Finally, a
sufficiently powered subgroup analysis should be conducted to
assess whether the algorithm performs similarly in subjects of
different age, gender, and ethnicity, considering the statistical
differences that exist between those subgroups.

Regardless of future work our study provides evidence that
automatic assistance in the identification of VFs, which are
largely omitted or ignored in current radiological practice, is fea-
sible with sufficient accuracy and sensitivity to become a useful
tool to assist overcoming the clinical workload and ultimately
improve patient care.

Conclusion

In summary, we demonstrated that an automated algorithm
trained for identifying VFs achieved excellent performance in
an external validation cohort of abdominal and chest CT scans

of Danish patients ≥50 years. Such an algorithm has the poten-
tial to bridge the known reporting gap by opportunistically
screening for VFs in routine CT scans and flagging the scans that
need attention to the radiologist. This in turn would be expected
to improve the earlier appropriate management of patients at
very high risk of future fractures.
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